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Abstract

Transient radiative transfer in a 2-D finite cylindrical medium with collimated pulse irradiation and a large mean free
path for scattering is considered thoroughly. Highly accurate solutions of integral equation for the transient radiative
transfer reveal that the radiative energy of the medium core is less than the radiative energy of the medium boundary,
after the attenuated pulse irradiation has passed through the medium. The distinction between the extraordinary results
of the above case and the results of other cases is examined. It is found that influence of the decrease rate of radiative
energy with the passage of time is larger than that of the extinction decay of the radiative intensity along a propagation
path for transient radiative transfer in a 2-D medium with a large mean free path for scattering. Moreover, scattering
coefficient and geometric size are the major factors determining the spatial distribution type of scattered radiation
energy at large time and the temporal evolution of the spatial distribution type of radiation energy. © 2001 Published

by Elsevier Science Ltd.
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1. Introduction

Scattering and propagation of light through a scat-
tering medium exposed to a pulse irradiation is a topic
of current interest. Examples are optical pulse diffusion
in bio-tissues and optical properties estimation from
time-resolved measurement of light [1,2]. When treating
the transient radiative transfer analytically, diffusion and
more rigorous approximation [2,3], Monte Carlo
method [1,4] and numerical solutions of exact integral
formulation [5,6] were developed. Since most studies on
transient radiative transfer consider optically moderate
and thick media, in this work great interests are focused
on the time-resolved spatial distribution of radiative
energy in an optically thin medium. Radiation propa-
gation in optically thin media is considered in radar and
communication engineering [7]. Basic information ob-
tained from the study on the time dynamics of photon
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migration in random media for both small and large
mean free paths of scattering will help in the develop-
ment of ranging and 3-D imaging devices [8]. Recently,
Pham and coworkers [9] have used frequency-domain
planar photon density waves to determine optical
properties of layered tissue-like media for various cases
including optically thin ones.

Comparisons in Refs [5,6] show that the solutions of
the integral formulation by a quadrature method (QM)
are accurate, and so the approach is adopted here to
investigate the transient radiative transfer in 2-D finite
cylindrical media with collimated pulse irradiation. The
results show that, if the medium has a very large mean
free path for scattering (MFPS), the inverse of the
scattering coefficient, as compared with its geometric
size, the radiative energy of the medium near the
boundary is more than that of the medium core, after
the attenuated pulse irradiation has passed through the
medium. To our best knowledge, such a phenomenon
has not been reported yet. Therefore, the distinction
between the extraordinary results of the above case and
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Nomenclature t time
t. time when the peak of the pulse enters
¢ speed of light in the medium the medium
e ek unit vectors in the r-, - and z-directions, t, full width at half maximum for F
respectively, see Fig. 1 u radiation energy density
F function describing the temporal shape
of the irradiation, see Eq. (4) Greek symbols
1 radiation intensity p extinction coeflicient
Iy peak value of the pulse 4 function defined in Eq. (13)
Moo incident radiation function 0 polar angle
Mo, My, z- and r-components of radiative flux K absorption coefficient
N,,N,, Ny quadrature point numbers for ¢, u and s i cos 0
integrations, respectively 0y scattering coefficient
ra,z cylindrical coordinates, see Fig. 1 10) azimuthal angle
70, 20 radius and height of the cylindrical me- w scattering albedo
dium, respectively
s distance measured from the point con- Subscripts
sidered reversely along the direction de- u upper limit
noted by 6 and ¢ w boundary
: : s m ol
glsr{:sults of other cases is examined thoroughly in this Moo (r,2, 1) = /0 / | 102 1, 0.1) di dop, @)

2. Formulation and numerical methods

Transient radiative transfer in an absorbing, iso-
tropically scattering, 2-D axisymmetric finite cylindrical
medium (radius r, and height z,) is considered here. The
medium is assumed to be cold; that is, the emission of
the medium is negligibly small as compared with the
irradiation at the medium boundary. The radiative
properties of the medium are considered to be constant,
and the scattering is instantaneous or of no retention
time. The spatial and the directional coordinate systems
are shown in Fig. 1. Both ry and z, are assumed to be
much larger than the wavelength. Then, the radiative
intensity 7 at a position denoted by r and z along a di-
rection denoted by the polar angle, 0, and the azimuthal
angle, ¢, at time ¢ can be described by the equation of
transient radiative transfer

1 a[(r7z'ﬂ>§0>t) 2\1/2 al(r,zhu,(p,t)
ik il ath A ACANTNS I hak kil ach 522
¢ a TUme)Tese——y
(=) Psing 3l(r,z,p 0,1)
r 0o
ol(r,z, u, @, t 1
+Mw+ﬁl(r7z7ﬂ7(f)7l) :—(ISM()()(V,Z,I),
0z 4n

(1)

where pt = cos 6, ¢ the speed of light in the medium, f the
extinction coefficient, and o is the scattering coeflicient.
The incident radiation function, My, is defined as

and is related to the radiation energy density u through
Moo (r,z,t) = cu(r,z,t).

The medium is exposed to a spatially uniform colli-
mated time-dependent irradiation normal to the circular
bottom surface at z = 0, the top and lateral surfaces are
free from irradiation, and the boundaries of the medium
are not reflecting. The temporal shape of the irradiation
is considered to be a pulse described by a truncated
Gaussian distribution. Then, the boundary condition for
Eq. (1) can be expressed as
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Fig. 1. The geometry and the coordinate systems.
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1(r,0, 1, 9,1) = LLF(1)0(1— 1)8() for 0<r<r,
u>0 0<p<2m, t=0, (3a)

1(ryzo, 1, 0,6) =0 for 0<r<r, p<O0,
0<e@ <2m, t20, (3b)

I(r07zaua¢7[)zo for 0<Z<205 71<[1<1,
n/2 < ¢ <3m/2, t=0, (3c)

where 0 is the delta function, and the function F is de-
fined as

F(t) = exp [ —4(In2) (t:—tc)z] (4)

with ¢. denoting the time when the pulse reaches its
maximum and #, denoting the full width at half maxi-
mum (FWHM) for F. By changing the expression of F,
the following integral formulation can be readily applied
to a problem with other temporal shapes of irradiation.
We assume that there is no radiation energy within the
medium initially. Thus, the initial condition is

I(r,z,u,9,0) =0 for 0<r<ry, 0<z<z2,
—1<u<l, 0<op < 2m. (5)

The notation denoting the spectral dependence of the
radiative properties has been omitted to simplify the
mathematical formulation; the present equations are
valid for monochromatic or gray radiative transfer.

Substituting the formal solution of intensity obtained
from the integration of Eq. (1) into Eq. (2), we can
obtain the integral equation of My, [6]

My (r,z,t) =1F(t — z/c) exp(—fz)H (ct — z)

2 pl ps(rzpel)
—H(ct — z2) / / / B
0 -1 Jo

X CXp(—ﬁS) MOO[rl(r7S7:uv (/))72,(27 S, #)7
t—s/c]dsdpde, (6)

where H is the Heaviside step function, w = a,/f the
scattering albedo, and s the geometric distance from the
considered point (r,z) to the scattering point (+/,7) at
which radiation is scattered at the instant # = ¢ — s/c to
contribute to the My, at the considered point (r,z) at
the instant ¢. The first and second terms on the right-
hand side of Eq. (6) represent the driving term and the
scattering contribution, respectively. In Eq. (6), we de-
fine

P @) = 7 = 2rs(1 — 1) cos o + s (1 — )],
(7
Z’(Z,S, :u) =Z =Sl (8)

Su(rvzv K, (p,t) = min{(Ct 72)/(1 - ,u),sw(r,z, K, (p)}7

©)

where min{x, y} denotes the smaller value of x and y and
s,, 1s the distance from the considered point labeled by r
and z to the nearest point on the medium boundary seen
from the considered point reversely along the direction
denoted by 6 and ¢. It is readily found that

(ZO_Z)/H - for —1<#<H|("»Z7¢’)7
sw(r,z,u, (P) = é’(}", (p)/(l 7Au2) & for lul(rvzv (p)<ﬂ<H2(rvzv(p)a

z/u for 1, (r,z,0) <p<1
(10)
with
.ul(razv (P) = - Cos{arctan[C(r, QD)/(ZO - Z)}}7 (11)
pa(r,z, @) = cos{arctan[{(r, @) /2]}, (12)
{(r,p) = rcos g + (12 — r*sin’ o) (13)

As shown in Eq. (6), s, represents the length determining
the domain of dependence of the My, at the position
(r,z). Since the domain of dependence of My, may vary
with time, Eq. (6) is a Volterra integral equation.

We also take interest in the z- and r-components of
radiative flux, M;y and M, defined as

Ml()l"Zt 2n
[ [ s
Mlert

X dude. 14
{am‘/ <p} "
They can be expressed in terms of My, as [6]
L) <t zpoyenot—o{ | hiter—2)
= —_ —_ t_
My (2.0 ) z/c) exp(—fz 0 ct—z
1
i H(cl —z)
/21( / / u(r.2,1,0.8)
x exp(—

Lo eoso
(1= )" cos g

X MOO[V/(}",S7 I (p),Z,(Z,S7 H)?t_s/c]
x ds du de. (15)

The method adopted to solve the integral equation of
My is the QM; the details of the QM have been given in
[5,6]. To validate the results obtained by the QM, we
also solve the problem by the reverse (or backward)
Monte Carlo method (RMCM) [10,11].
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3. Results and discussion

To illustrate the extraordinary distribution of radia-
tive energy for transient radiative transfer in a finite 2-D
cylindrical medium with a large MFPS, we consider the
cases with the aspect ratio zo/rp = 1.0 and a pulse ir-
radiation of ct./zy = 1.0 and ct,/zy = 0.33302.

First, the accuracy of solutions obtained by the QM
is examined for an optically thin case; the solutions
obtained by the QM for transient radiative transfer in an
optically moderate or thick medium have been shown to
be accurate [6]. For comparison, results obtained by the
RMCM as well as those by the QM are listed in Table. 1.
To keep the statistical (or random) error inherent within
the RMCM results small enough, 10® bundles are used
to generate each RMCM result. The value just following
each RMCM result in parentheses is the estimation of
the standard deviation of the RMCM result. The stan-
dard deviation can be viewed as an indicator of the
magnitude of random error within the result. We tabu-
late the results generated by using 21 x 21 and 41 x 41
uniform grid points with quadrature points
N, = N, = 10 and N, = 40 (quadrature set A) to exam-
ine the grid-dependence of the QM results. To show the
quadrature-dependence, another set of quadrature
points, N, = N, = 7 and N, = 30 (quadrature set B), is
also employed associated with the 41 x 41 grid mesh. In
Table. 1, the number after the abbreviation “QM”
represents the number of grids used, while the alphabet
“A” or “B” indicates the quadrature set employed.

The QM and the RMCM which are quite different in
essence generate consistent solutions for a long duration,

Table 1

as shown in Table. 1. Comparing the three sets of QM
results tabulated in Table. 1, we find that the QM results
converge very fast; the results generated by employing
less grid and less quadrature points are very close to
those by using the 41 x 41 grid mesh and quadrature set
A. Moreover, the CPU time required by the QM with
the 41 x 41 spatial grid points, 200 time steps and
quadrature set A to solve the present example is about
4.51 x 10* s on a DEC Alpha 8400 computer, while that
required by the RMCM to generate My, M,y and M}, on
a 3 x 3 grid points at 6 instants is about 2.20 x 10° s.
Therefore, the QM is not only accurate but also efficient.

Table 1 and the comparison in [6] show that the
21 x 21 grid mesh with quadrature set A and the 21 x 21
grid mesh with quadrature set B can generate accurate
results for the optically thin and the optically moderate
cases, respectively. Thus, they are employed to generate
the plotted results in this work to save the CPU time
required.

The graphic M, results obtained by the QM for the
above optically thin case are shown in Figs. 2 and 3 To
exhibit the evolution of the time-resolved spatial distri-
bution of radiative energy within the optically thin me-
dium, results in series are presented in Figs. 2(a)—(f).
Figs. 2(a) and (b) show the instantaneous spatial dis-
tributions of My, when the peak of the unscattered
penetrating irradiation reaches the z =1z,/2 and the
z = z; planes, respectively. In the optically thin case, the
unscattered penetrating irradiation is the main contri-
bution to the My, before the attenuated pulse irradiation
passes through the medium. Since the spatial distribu-
tion of irradiation is independent of r, the My, results on

The results of M, for a medium with fro = fzp = 0.1 and @ = 1.0 obtained by the QM and by the RMCM?*

MQO(KZ, l)/[o

r/ro z/zy ct/zy QM 21A QM 41B QM 41A RMCM

0.0 0.0 2.0 0.011008 0.011009 0.011010 0.0110099 (1.7 x 1077)
0.0 0.5 2.0 0.025810 0.025812 0.025812 0.0258138 (1.4 x 107%)
0.0 1.0 2.0 0.926684 0.926684 0.926684 0.9266848 (1.3 x 107%)
1.0 0.0 2.0 0.004644 0.004650 0.004644 0.0046461 (2.3 x 1077)
1.0 0.5 2.0 0.011959 0.011970 0.011961 0.0119615 (7.3 x 1077)
1.0 1.0 2.0 0.914983 0.914982 0.914985 0.9149878 (6.6 x 1077)
0.0 0.0 3.0 0.003462 0.003476 0.003463 0.0034640 (3.7 x 1077)
0.0 0.5 3.0 0.002207 0.002208 0.002208 0.0022083 (3.9 x 1077)
0.0 1.0 3.0 0.001577 0.001577 0.001577 0.0015778 (2.0 x 1077)
1.0 0.0 3.0 0.002844 0.002842 0.002844 0.0028451 (2.4 x 1077)
1.0 0.5 3.0 0.002868 0.002864 0.002868 0.0028695 (5.0 x 1077)
1.0 1.0 3.0 0.002983 0.002975 0.002983 0.0029823 (4.2 x 1077)
0.0 0.0 5.0 1.983 x 10°° 1.963 x 10°° 1.974 x 107° 1.976 x 107 (2.4 x 107%)
0.0 0.5 5.0 1.711 x 107° 1.698 x 10~° 1.703 x 10~° 1.704 x 107 (2.3 x 107%)
0.0 1.0 5.0 2.204 x 107° 2.192 x 107° 2.196 x 107° 2.196 x 107 (2.8 x 107%)
1.0 0.0 5.0 5.073 x 107¢ 5.056 x 107° 5.064 x 107° 5.065 x 1076 (5.8 x 107)
1.0 0.5 5.0 4.516 x 10~° 4.506 x 10 4.509 x 107° 4.509 x 107 (7.2 x 107%)
1.0 1.0 5.0 5.204 x 107¢ 5.191 x 107° 5.197 x 107° 5.202 x 1076 (5.6 x 107)

#The value within the pair of parentheses is the estimation of the standard deviation of the RMCM results.
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Fig. 2. The time-resolved spatial distribution of My(r,z,¢) for the case with firy = fizg = 0.1 and w = 1.0: (a) My /Iy at ct/zy = 1.5;
(b) M()()/Io at CI/Z() =2.0; (¢ (M()U/I()) x 10 at Ct/Z(, =2.5; (d) (M(}()/]()) x 10 at Cl/Z() =3.0; (e) (Moo/l(,) x 10* at CI/Z(J =3.5;

(0) (Moo/Io) x 10° at ct/zy = 4.5.

a z = constant plane exhibit a high uniformity at an
instant before cz/zy = 2.0, as shown in Figs. 2(a) and (b).
After the peak of the unscattered penetrating irradiation
has reached the z =z, plane, the scattered radiation
gradually becomes the dominant contribution to the
My, and the magnitude of My, decreases rapidly due to
radiation loss from the medium boundary as ¢ increases.
Thus, the My, near the lateral surface, r = ry, becomes
smaller than that around the symmetric axis, » = 0, as
displayed in Fig. 2(c). At the instant, the location of the
largest My, appears around the point (0, zp).

At the early stage of the scattered-radiation-domi-
nant period, the larger My, in the region around the
point (0,z) plays a role similar to a diffuse radiative
source, and the radiative energy of the source propa-
gates nearly isotropically to other parts of the medium
later. Fig. 2(d) shows that the spatial distribution of My
at the instant cz/zy = 3.0. It is found that at the instant
the region with a larger My, shifts to the neighborhood
of the bottom surface, z = 0, and the region with a larger
My extends to the corner near to the point (rg,zo) along
the bottom and the lateral surfaces. On the other hand,
the smallest My, appears around the point (0,z) at the
instant. At a later instant, ct/zp = 3.5, the My at the
point (79, 0) has the largest value, while the smallest My,
is located at the point (0,z), as shown in Fig. 2(e). As

time passes further, the location of the smallest My
moves along the symmetric axis in the negative z-direc-
tion to the neighborhood of the central point (0,z/2),
and the regions near the two corner points, (ry,0) and
(r0,20), have larger values of M, than the other parts of
the medium. This can be easily identified from Fig. 2(f),
which displays the spatial distribution of M,y at
ct/zp = 4.5. Tt is worth noting that after ct/zy = 4.5, at
least during the period observed, ct/zy < 30.0, the dis-
tribution of My, keeps to have a similar distribution to
that at ct/zo =4.5. An example of the instant
ct/zop = 10.0 is shown in Fig. 3.

Based on intuition, one might not accept that the My,
of the medium core is less than the M, of the medium
boundary, where radiative energy can readily escape
from the medium. However, the present results do show
such distributions of My, as shown in Fig. 2(f) and
Fig. 3. Moreover, solving cases with various albedos,
widths of the irradiation pulse, spatial distributions of
irradiation, aspect ratios and optical sizes, we find that
similar My, distributions always occur at large time,
provided that the 2-D finite medium is scattering and its
MFPS is much larger than the characteristic geometric
size of the medium [12]. Here, the characteristic geo-
metric size is the largest length characterizing the me-
dium. For example, if zy < r( then ry is the characteristic
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Fig. 3. The spatial distribution of [Mo(r,z,¢)/Iy] x 10" and the
directions of radiative fluxes at ct/zy = 10.0 for the case with
Pro = fzo = 0.1 and @ = 1.0 (arrow: the direction of radiative
flux at the arrow beginning point).

geometric size of the medium. When the MFPS of the
medium considered is not far larger than the charac-
teristic geometric size of the medium, the distribution of
My, for transient radiative transfer is similar to time-
independent radiative transfer [13]. That is, the My of
medium core is larger than the M, of the medium in the
border. Results of an example with @ =1.0 and a
moderate MFPS is shown in Fig. 4. For convenience of
interpretation, in Figs. 3 and 4, directions of the radia-
tive fluxes and contour of M, are shown together. From
Figs. 3 and 4, it is found that directions of the radiative
flux and the gradient of My, for the case with an MFPS
much larger than the characteristic geometric size of the
medium are almost the same and those for the case with

1.00
0.80 1 L
0.601 F
N:
~
N
0.401 -
\ NN\ ~ ~
3.4
0207 |\ ))\X 24|
AN N A
0.00 }

000 020 040 060 080 1.00
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Fig. 4. The spatial distribution of [My(r,z,t)/lp] x 10% and the
directions of radiative fluxes at ct/zp = 4.0 for the case with
Pro = Pzo = 1.0 and w = 1.0 (arrow: the direction of radiative
flux at the arrow beginning point).

an MFPS not much larger than the characteristic geo-
metric size of the medium are almost reverse. The ex-
traordinary distribution of My for the case with an
MFPS much larger than the characteristic geometric size
of the medium demands physical interpretation.

When the o, of the 2-D medium under consideration
is small, radiation (or photons) can travel a very long
distance along a direction in the medium before being
scattered. The distance is characterized by the MFPS.
Thus, if the MFPS is much larger than the characteristic
geometric size of the medium, radiation can easily es-
cape from the non-participating boundary of the me-
dium, and so the radiative energy left within the medium
decreases with the passage of time at a very large rate.
Next, as indicated by Eq. (6), after the pulse irradiation
has passed, the My, at a point (r,z) at an instant is the
result of radiation that leaves other points, say (+/,2), in
the medium at an earlier instant and arrives at (r,z). The
influence of the distance, s, between (+,2') and (r,z) is
twofold. First, a larger s results in a larger exponential
decay along the path. The second is that a larger s
corresponds to a larger radiation scattered at an earlier
instant, ¢ = ¢ — s/c. The former reduces the magnitude
of the integrand in Eq. (6) and the latter increases that in
Eq. (6). Besides, to obtain the My, from Eq. (6), we have
to integrate not only over the distance but also over all
directions, and so the effects of the former and the latter
depends on the location of the point of interest. Com-
paring the distances from the central point (0,z,/2) to
the boundary of the medium and those from a corner
point, for example, (ry,0), to the boundary, we can find
that for the corner point (ry,0) there is a region whose
inner point has a distance to (ry,0) larger than the
largest distance from (0, zy/2) to the boundary. Since the
temporal decrease rate of the radiative energy is large
and the spatial exponential decay of the radiative in-
tensity is small for the case with an MFPS much larger
than the characteristic geometric size of the medium,
intensities from a farther region have a significantly
large contribution to Myy. Therefore, the My, of the
medium close to the corner is larger than the My, of the
medium around the core, although radiation may escape
through the boundary at points around a corner. For
convenience, the interesting phenomenon might be
called the “‘temporal-decrease-dominant” phenomenon.
The temporal distributions of My, shown in Fig. 5(a)
reveal the effect of a large temporal decrease rate on the
spatial distribution of My, for the case with fro =
pzo = 0.1 and w = 1.0. Each of the curves in Fig. 5(a)
reaches the maximum as the peak of the attenuated
pulse irradiation arrives at the point of interest and after
the instant the My, decreases quickly with the passage of
time.

From the point of view of experiment, to measure the
radiative fluxes at the boundary is more feasible than to
measure the spatial distribution of My in the medium
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Fig. 5. The temporal distributions of the QM results for the case with firy = fzy = 0.1 and w = 1.0: (a) My (r,z,¢) at various points;

(b) Myo(r,z,¢) at various r’s.

interior, and so it is beneficial to examine the radiative
fluxes leaving the boundary. Four curves of the time-
resolved radiative fluxes at different »’s on the z =z,
plane for the optically thin problem are plotted in Fig.
5(b). It is about the instant ct/zy = 2.5 after which the
scattering dominates the radiation transfer within the
medium. Thus, only parts of the curves after the instant
ct/zy = 2.5 are shown in Fig. 5(b) to examine the be-
havior of scattered radiation. Before the instant
ct/zy = 3.8 at which the four curves in the figure become
indistinguishable, the four curves in Fig. 5(b) cross each
other during the period from ct/zy = 2.7 to ct/zy = 3.0.
The M;0(0,z,¢) is larger and smaller than M, (ro,zo, ?)
before and after the crossing instant, respectively. As
shown in Figs. 2(c) and (d), the My (0, zy, ¢) is larger and
smaller than the Moy(ro,z0,¢) at ct/zp=2.5 and
ct/zy = 3.0, respectively. Thus, temporal distributions of
the My curves represent the time-resolved spatial dis-
tribution of My, and the multiple crossing instants of
the curves show that the transition of the spatial distri-
bution of My, is gradual.

One more example exhibiting such a phenomenon is
shown in Fig. 6. For the optically moderate medium
(Pro = Pzo = 1.0) with w = 0.1, both the weak scattering
and the strong absorption of the medium make the
temporal decrease rate of the radiative energy within the
medium large enough to result in the temporal-decrease-
dominant distribution of M.

If the optically moderate medium (fry = fzy = 1.0)
has a larger w, say, o = 1.0, then the MFPS of the me-
dium becomes smaller. A photon emanating from the
medium core has a larger chance to be scattered before
reaching the medium boundary, and so the stronger
scattering reduces the radiative transfer from the medium
core to the boundary. Then, the temporal decrease rate of
the radiative energy becomes smaller, and the contribu-
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Fig. 6. Thespatial distribution of [Moo(r, z,¢)/1y] x 107 atct/zy =
4.5 for the case with fro = fzo = 1.0 and w = 0.1.

tion of the intensity from a far region becomes compa-
rable with or smaller than that of the intensity from the
neighborhood of a considered point. Thus, after the at-
tenuated pulse irradiation has passed through the medi-
um, the My, of the core is larger than the My, of the
boundary, and the direction of the radiative flux at a point
is nearly the opposite of the gradient of My at the point, as
shown in Fig. 4. Such a spatial distribution of My, is
similar to that for time-independent radiative transfer.
Moreover, a 2-D finite optically thick medium with a not
large MFPS also has a similar spatial distribution of My
at large time. To save space, the spatial distribution of M
for the optically thick medium is not shown here.

The transient radiative transfer in 2-D finite cylin-
drical media of the fixed aspect ratio zy/ry = 1.0 with
various combinations of  and oy may be classified into
groups according to their types of the spatial distribu-
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Fig. 7. The map for various spatial distribution types of
Moy (r,z,t) at large time in 2-D finite media with zy/ry = 1.0.

tion of My, at large time. In Fig. 7, the media which have
similar spatial distributions of My, at large time are in-
dicated by the same symbol. As shown in Fig. 7, whether
the spatial distribution of My, is temporal-decrease-
dominant or time-independent-like depends strongly
on the MFPS = 1 /g, and seems to be independent of
the absorption coefficient, k = f — o, for a wide
range of optical sizes. The temporal-decrease-dominant
phenomenon occurs when a1y < 0.2, while the time-in-
dependent-like distribution of My, appears when
osr9 = 0.5. As the value of o7 varies from 0.2 to 0.5, the
spatial distributions of My, at large time show transition
types between the temporal-decrease-dominant and the
time-independent-like distributions. Examples for tran-
sition from the temporal-decrease-dominant distribution
to the time-independent-like distribution have been
shown in [12], and only one of them is plotted in Fig. 8.
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Fig. 8. The spatial distribution of [My(r,z,1)/lp] x 103
at ct/zp = 6.0 for the case with firy = fzp = 1.0 and v =0.3
(an example of transition type 1).

The results in [12] (or Figs. 2(f), 6 and 8) clearly show
that the transition is a continuous change with varying
asrp. It is noted that the above sorting of the spatial
distributions of My, at large time in Fig. 7 is not strict,
because the transition is not abrupt. Besides, we also
find that the media with an identical value of o¢ry not
only have similar spatial distributions of M, at large
time, but also have similar time-resolved evolution of the
spatial distribution types of My. This is because the
radiation propagation is governed by the scattering and
the geometric size of the medium. Two sets of figures
showing similar evolution of the two media with the
same value of o,y have been given in [12]; they are not
duplicated here to save space.

4. Concluding remarks

Transient radiative transfer in 2-D finite cylindrical
scattering media is considered. The exemplified problems
are solved by the QM, and the RMCM is also adopted to
solve problems to validate the QM results. Comparisons
of the results by the two methods show that the QM
solutions based on the exact integral equation formula-
tion are effective and are of high accuracy.

As shown by the results, for the transient radiative
transfer in a 2-D finite cylindrical medium with a large
MFPS the radiative energy near the boundary is more
than that in the core of the medium, after the attenuated
pulse irradiation has passed through the medium. Such
a spatial distribution of the radiative energy for the
above transient case at large time is just distinct from
those of the other transient cases and time-independent
radiative transfer. It may be concluded that the influ-
ence of the decrease rate of the radiative energy with the
passage of time is larger than that of the extinction
decay of the radiative intensity along a propagation
path for the transient radiative transfer in a 2-D finite
medium with a larger MFPS than its geometric size, and
that a,ry is the major factor in determining the temporal
evolution of the spatial distribution type of the radiative
energy.
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